Highway Noise Levels in a Suburban Environment Under Inversion Conditions

James P. Chambers NCPA / Univ. of Mississippi

Hugh Saurenman ATS Consultants Inc, Los Angeles CA 90017

Bob Bronsdon, Lou Sutherland, Consultants in Acoustics

Ken Gilbert, Roger Waxler, Carrick Talmadge NCPA / Univ. of Mississippi

Presentation conducted by Hugh Saurenman for James Chambers

For questions James Chambers can be reached at:

Dept. of Mechanical Engineering

Univ. of Mississippi

University, MS 38677

E-mail: chambers@olemiss.edu

Parabolic Equation Model (PE)

- Full wave solution of wave equation
- Multiple varieties available
 - Split step solution (propagate in uniform atmosphere then correct for atmospheric effects)
 - Requires small steps, constant freq.
 - Can handle arbitrary atmosphere and ground impedance
 - Needs temperature and wind profile to ~10-20% proprange
- Topography changes (barriers, terrain, etc.) open research area

MET MODELING (temperature)

50' tower site 2

Stull's Scaling Law

$$T(z)=T_s+[1-(1-z/H)^{\alpha}]\Delta T$$

$$dT/dz = \Delta T\alpha/H @ z = 0$$

Assumptions:

$$\alpha$$
= 2.5

$$\Delta T = 22.8^{\circ} + T_{s}$$

The University of Mississippi

MET MODELING (wind)

• No significant winds measured up to 13 m (50')

- Previous Arizona
 Department of
 Environmental Quality
 (ADEQ) suggested low
 level "jet" of 2-4 m/s at
 ~50m at site several miles
 away
- Representative wind profile used to see representative effects

The University of Mississippi

PE RESULTS CONTINUED

- PE run for octave bands 63Hz to 1 kHz
- PE run for no met (air absorption and ground absorption) as reference
 - rh from met data, $\sigma = 5000$ cgs rayls (assumed)
- PE run for temperature only as well as temperature combined with upwind and downwind
- Site 1 level used as source and range corrected (along with PE output) to predict levels in neighborhood (sites 3-4).

FIELD MEASUREMENTS

Site 3 Site 2

Site 1

Site 4

1/3 octave band recordings

13m (50') met tower

Y

Noise Monitors: Larson Davis 824s. Data loggers used at Sites 2 and 3 for continuous collection of 1/3 octave band data at one second intervals.

Met Station: 13.7 m (45 ft) tower, wind speed and direction at 13.7 m (45 ft) and ground level, temperature at 1.7 m (5.5 ft) intervals, humidity at ground level.

Digital Audio Recorder: Continuous audio recording saving 15 minute WAV files on a hard drive.

Predicting Levels

- PE code provides Excess Attenuation (relative to spreading loss), need to correct "source" level
- Site 1 used as quasi-source and then range corrected for sites 2-4
- Usually assumes point source (1/r or 20 log₁₀(range))
- Long highway (or infinite line) source 1/sqrt(r) or $10\log_{10}(\text{range})$
- Our data seems to split the difference $15 \log_{10}(\text{range})$

	Spherical 20*log10(range)	Typical data No gradient	15*log10(range)	Cylindrical 10*log10 (range)
Mic2-Mic1	-24.7 dB	-21.2 dB	-18.5 dB	-12.3 dB
Mic3-Mic1	-28.4 dB	-23.5 dB	-21 dB	-14.2 dB

RAISED JET 5 m (PE) EA at source height 0.2 m receiver height 1.5 m Slight change in structure Energy pushed to 700 m range 800 1000 speed of sound (m/s) Range (m) EA freq = 1000 at source height 0.2 m, flow resistivity = 5000 cgs Rayls Height (m) 40 f = 1000 Hz March 18 715 EA at source height 0.2 m receiver height 1.5 m -20 -30 -40 200 Original 1000 600 800 EA freq = 1000 at source height 0.2 m, flow resistivity = 5000 cgs Rayls **Elevated Jet** -40 Range (m) The University of Mississippi

LOWERED JET 5 m AND DOUBLED SPEED

Slight change in structure Energy brought in to 500 m range

Lower elevation higher speed Jet

The University of Mississippi

Finite Length Highway

- Each Section of Highway treated as separate source and run through PE model (ala TNM) and combined incoherently
- Twenty 15m sections used
- Functionally provides the 15log₁₀(range) effect observed previously

CONCLUSIONS

- Inversion cause of increased levels in community
- PE model capable of showing increase or decrease in levels due to meteorology
- Effects of temperature inversion sufficient to explain majority of increased levels (and community complaints)
- Implied effects of light winds (assumed profile) explains perturbations about this elevated level (focusing)
- Region of High absorption near highway (plowed field) possible cause of finite length line source effects

